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Estimating loss distribution for a
securitisation transaction
by Vishal Saxena and Dilip Mohan, IFMR Capital

One of the key questions any investor would have on a

securitisation transaction is what could be the potential loss

in it. Based on the loss distribution, the credit enhancement

and the price of the transaction are determined. Rating

agencies also evaluate a securitisation transaction based on

the underlying pool of assets, estimated losses and the

extent of loss protection that is provided to the investors

through various forms of credit enhancement.

Hence, for a securitisation transaction it is crucial to come up

with a suitable method to estimate the loss distribution.

From a large database of historic performance of loans,

along with access to loan portfolio data of some

originators, we have built different models for estimating

loss distribution for different asset classes also taking into

account the vintage of the asset class and the originator.

The losses on a loan portfolio data of an originator can be

estimated with the Transition Matrix & Loss Given Default

(TM-LGD) model (discussed in Securitisation & Structured

Finance Handbook 2016, Commercial vehicle securitisation:

Loss given default estimation using Transition Matrix

(TM-LGD) by Vaibhav Anand and Amit Mandhanya, IFMR

Capital). The TM-LGD model takes the entire loan portfolio

data of the originator as its input and generates a set of

IFMR Capital has structured, arranged and invested in more than 400
securitisation transactions over the last eight years which has helped
large and small originators to access capital at affordable cost. These
originators are from different asset classes like microfinance, affordable
housing finance, small business loans and commercial vehicles. To give
additional comfort to the investors, IFMR Capital retains skin-in-the-game
by regularly investing in the senior or subordinated tranches of the
securitisation deal it structures. 

CHAPTER 5  I CAPITAL MARKETS INTELLIGENCE

1

Vishal Saxena, Associate Director - Risk Analytics and

Modelling

tel: +91 95 6620 5899

email: vishal.saxena@ifmr.co.in

Dilip Mohan, Senior Associate - Risk Analytics and

Modelling

tel: +91 75 5000 9981

email: dilip.mohan@ifmr.co.in

Vishal Saxena Dilip Mohan



CHAPTER 5  I CAPITAL MARKETS INTELLIGENCE

Transition Matrices (which we will be discussing in this

article). The losses are then estimated from these TMs

(Transition Matrices). A limitation of the TM-LGD model is

that it is very difficult to generate a set of TMs for the loan

portfolio from a given set of peer TMs. The model depends

on the availability of the loan portfolio data.

We have built an alternative model which estimates the

losses of a securitisation transaction based on a few

historical parameters. We can calculate these parameters

based on some historical data of the originator or a peer.

These parameters can then be notched up or down based

on the riskiness of the originator’s loan portfolio. 

This model uses a limiting form for the portfolio loss

distribution with a systemic factor (using a conditional

independence framework) derived by Oldrich Vasicek, a

Czech mathematician and quantitative analyst, in 1991.

But, one of the assumptions in Vasicek’s work was that the

loans in the portfolio were homogenous. In reality,

however, there are wide variations in the repayment

patterns and behaviours for different asset classes – like

housing finance, vehicle finance, microfinance, small

business loans, etc. Even within a specific asset class, the

loan repayment behaviour varies between subgroups. For

example in vehicle finance, the characteristic of a light

commercial vehicle loan is completely different from that of

a heavy commercial vehicle loan. 

We have come up with an approach that extends Vasicek’s

model to take care of non-homogenous loans in the

portfolio, so that it can be used to determine the loss

distribution of securitisation transactions. 

The limiting distribution of portfolio
losses

By using Merton’s approach Vasicek assumes that a loan

will default at its maturity T, if at T its assets are lower than

its obligations payable B.

Let A
i
be the value of the ith borrower’s assets, described by

the process:

dA
i
= �

i
A

i
dt + �

i
A

i
dX

i

The asset value at T can be obtained by integration:

logA
i
(T) = logA

i
+ �

i
T – 1⁄2�

i
2T + �

i
�–TX

i
(1)

Where X
i
~ N(0,1)  is a standard normal variable.

The probability of default of the 
i
th loan is given by:

p
i
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represents the default threshold.

Consider a portfolio of n loans of equal amount, equal

probability of default p, same maturity T and a flat

correlation coefficient � between the asset values of the

two observations.

Let, L
i
be the gross loss on ith loan. No recovery is assumed

which means L
i
= 1 when a loan default and L

i
= 0 when

the loan does not default. So the gross loss L of the

portfolio is:

L =
n

� L
i

i=1

If the default of loans in the portfolio is independent of

each other, then by central limit theorem the portfolio loss

distribution would converge to a normal distribution as the

portfolio size increases.  But the event of defaults is not

independent and hence the conditions for central limit

theorem are not satisfied and L is therefore not normally

distributed.

The variables X
i
in Equation (1) are jointly standard normal

with equal pair-wise correlations �, and can therefore be

represented as:

X
i
= �–�Y + �–1 – �Z

i
(3)

Where, Y, Z
1
, Z

2
, ... , Z

n
are mutually independent standard

normal variables.

Y can be interpreted as a common risk factor for the

portfolio, such as GDP over the interval (0, T), �–�Y can be

interpreted as the contracts exposure to the common risk

factor and �–1 – �Z
i
represents company specific risk.
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When the common factor Y is fixed, the conditional

probability of loss on any one loan is:

By using equation (2) and (3):

p(Y) = p (L
i
= 1 �Y) = p(X

i
< Z

i
�Y)

p(Y) = N (
N–1(p) – �–�Y

)
(4)

�–1––––�

By the law of large numbers the portfolio loss conditional

on Y converges to its expectation p(Y). 

As n � ∞: L(Y)�� p(Y)

Then:

P(L ≤ 	) = P(p(Y) ≤ 	) = P(Y ≥ p–1(	)) = N(–p–1(	)) 

By using equation (4):

P(L ≤ 	) = N ( �–1 – �N–1(	) – N–1(p) )

�–�

This result is given in Vasicek (1991).

This limiting distribution also holds true in case of a

portfolio with contracts of different ticket size, as long as

the portfolio is not dominated by a few loans which are

much larger than the others.

Extension of the model to handle
non homogeneity in loan repayment
behaviour and estimation of
transaction loss

Let us take an example of a securitisation transaction of a

diversified vehicle finance portfolio which has exposure to

light commercial vehicles (LCV), medium commercial

vehicles (MCV), heavy commercial vehicles (HCV),

construction equipment (CE) and cars.

Loans in different vehicle types are not homogeneous, they

are of different maturities, ticket size and loan behaviour. For

example, HCV and CE loans have larger ticket sizes and longer

maturity. Their loan repayment depends heavily on economic

cycle. LCV and car loans have relatively smaller ticket sizes

and shorter maturity. In LCVs, the loan repayment depends on

local factors like route profitability and in cars the loan

repayment depends on individual borrower characteristics.

Also, we have observed that loan behaviour among

subgroups may be correlated. For example, a reduction in

mining can negatively impact the cashflows for HCV as well

as CE. So, for estimating the total portfolio loss, the inter

group correlation in the subgroups needs to be

incorporated in the model as well.

To handle the non-homogeneity, we divide the total loan

portfolio into different homogeneous sub-groups and then

estimate subgroup-wise parameters for Vasicek’slimiting

form distribution i.e. correlation (p) and probability of

default (p). This division can be done either based on

expert judgement or by using some statistical technique

like clustering. We also estimate a correlation matrix C, of

the subgroups, and arrive at the inter subgroup

correlations from this. These parameters are estimated

based on historical loan repayment data.

By using Cholesky Decomposition, the correlation matrix C

is decomposed as:

C = L*LT

Using this matrix L we can generate correlated random

numbers Z– from uncorrelated numbers R– by multiplying

them with matrix L.

Z– = R– *L

Monte Carlo simulation is used to generate the portfolio

loss distribution given a set of marginal loss CDFs of

different subgroups, correlation matrix C and a covariance

matrix V amongst the subgroups.

Let X=(X
1
, X

2
, ..., X

n
) be a random vector. We already have

the marginal loss distributions of different subgroups F
xi
(x),

the correlation matrix C and the covariance matrix V.

Assuming that the marginal distributions and the

correlation matrix are consistent, which means that there is

a joint CDF with the desired marginal distributions and

correlation matrix.

Let (Z
1
, Z

2
, …, Z

n
)~MN (0,V) where V is a covariance matrix

with 1’s on the diagonal.
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Z
i
~N (0,1) for i = 1,2,…,n ; �(.) And �(.) be the PDF and CDF

of the standard normal variable.

Then  X
i
= F

xi
–1 (�(Z

i
)) has the desired marginal distribution F

xi
(.)

Since Z
i
’s are correlated, � (Z

i
)’s are correlated and hence

X
i
’s are also correlated.

The total loss for the portfolio is obtained by aggregating

all the subgroups’ losses in every simulation. 

Total portfolio loss = 
k

� X
i

i=1

where k is the total number of subgroups in the pool.

The loss distribution of the loan portfolio is obtained from

multiple simulations.  

Parameter estimation

Two parameters in the loss model need to be estimated.

They are (i) the probability of default of the subgroups;

and (ii) correlation within a subgroup. For estimating the

inter group correlation, the model also requires a

correlation matrix among various subgroups.

Identification of instance of default
The first step in estimating the probability of default is

identifying the instance of default for the subgroups. For

this, we need the “Transition Matrices” of loan

delinquencies in the respective subgroup. A Transition

Matrix is a nxn matrix with rows denoting the initial

delinquency states and the columns denoting the future

delinquency states after a transition period. Each cell in

the transition matrix gives the probability of loans moving

from one delinquency state to another. An example of

transition matrix is shown in Exhibit 2.

The circled number A denotes that there is a 2.3%

probability that a current contract (a contract with no

overdue) will miss one instalment in the next period and

move to ‘1 Instalment OD bucket’. The circled number B

4

Transaction loss model schema Exhibit 1

Segmenting the pool in
homogeneous groups

Added inter group
correlation; Cholskey
Decomposition

Using transformation get the
limiting form distribution for
the groups
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denotes that there is a 3.1% probability that a contract

which has missed three instalments till date will pay its

next instalment due and will also pay one of its overdue

instalment and hence the contract will move from

‘3 Instalment OD bucket’ to ‘2 Instalment OD bucket’.

Historical transition matrices are generated for loans

in the subgroups and they are analysed to identify

the delinquency bucket from which the recovery is

significantly low. 

In the given example, the box C shows that the probability

of any payment from ‘6 Instalments OD bucket’ is less

than 10%, which means that once a contract misses six

instalments it is highly unlikely that the loan will further

pay. Hence we will identify the instance of default as

delinquency bucket 6.

Estimating probability of default ‘p’ for the
subgroup
After identifying the instance of default for the subgroup,

its probability of default (PD) can be estimated from the

repayment history of similar loan contracts. 

The loan contracts used for estimating PD should have a

minimum vintage (or loan repayment history) that depends

upon the instance of default. The minimum vintage for the

loans can be estimated by using vintage charts of similar

historical loans. 

For calculating the PD of an MSME and a 2W portfolio of a

multi-asset class originator, let us assume that from the

TMs of the MSME and 2W loan portfolios, the instance of

default in both of them is estimated to be ‘4 instalments

overdue’. First a vintage chart of these portfolios are

drawn, where the X-axis is the month on books for a loan

and the Y-axis is the percentage of loans with four or more

instalments overdue as shown in Exhibit 3.

As shown in the vintage chart, the percentage of four or more

instalments OD loans is peaking at the 16th month for MSME

and at the 20th month for 2W, and then it is going down. It

means that a subset of MSME loans with a repayment history

of 16 months and 2W loans with a repayment history of 20

months are sufficient to capture the movement of loans to

and from ‘4 Instalments overdue’ bucket.

5

Illustrative Transition Matrix Exhibit 2

Source: IFMR Capital

Fore Part Current 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 6 Inst 7 Inst 8 Inst 
Closed Prepaid OD OD OD OD OD OD OD OD

Fore Closed 100% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Part Prepaid 99.70% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Current 1.20% 5.0% 91.5% 2.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1 Inst OD 0.0% 1.6% 12.6% 66.8% 18.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 Inst OD 0.0% 3.2% 3.1% 5.1% 49.8% 38.8% 0.0% 0.0% 0.0% 0.0% 0.0%

3 Inst OD 0.0% 1.8% 2.7% 0.7% 3.1% 31.8% 60.0% 0.0% 0.0% 0.0% 0.0%

4 Inst OD 0.0% 2.4% 0.3% 0.2% 0.3% 1.6% 20.0% 75.2% 0.0% 0.0% 0.0%

5 Inst OD 0.0% 0.5% 1.1% 0.1% 0.1% 0.1% 0.8% 12.3% 84.9% 0.0% 0.0%

6 Inst OD 0.0% 0.3% 0.4% 0.0% 0.0% 0.0% 0.1% 0.4% 7.2% 91.5% 0.0%

7 Inst OD 0.0% 0.0% 0.3% 0.0% 0.0% 0.1% 0.0% 0.1% 0.3% 7.6% 91.7%

8 Inst OD 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 99.3%

A

B

C
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After sub-setting the historical data, PD can be estimated

as a function of % of loans in the instance of default in the

subset portfolio.

PD = f ( 
count (instance of default contracts 

)
count (live contracts )

The function f can be as simple as an average of historical

periods or can be as complex as an equation combining

min, max, average etc.

Let us assume f as a weighted average function where

recent disbursements are given more weights than the

older disbursements. At time ‘t’, the % of Instance of

defaults is calculated as:

Q
t

= 
count (instance of default contracts)

count (Live contracts )

Month wise % of Instance of defaults Q
ti
, is calculated from

the monthly disbursements. PD is calculated as:

PD = w
t–1

Q
t–1

� w
t–2

Q
t–2

� … … … w
t–k–1

Q
t–k–1

� w
t–k

Q
t–k

The weights w
i
will be in declining ratio i.e. w

t–i
> w

t–i–1
;

which means that the recent group gets the highest

weightage and the oldest group gets the lowest weightage,

with intermediate weights reducing with time. 

Estimating inter and intra group correlations
The Pearson’s correlation coefficient can be obtained for

the loans within a subgroup and for the loans across the

subgroups. These will represent the estimate for intra-

group and inter-group correlation for the model. 

Model validation

The methodology used to estimate parameters have to be

validated and updated on a regular basis by back testing

on existing data. Some of the results for microfinance and

commercial vehicle transactions are shown below.

Microfinance loan portfolio
The model was used to estimate the loss for securitisation

transactions of two microfinance originators. For these

originators, we observed that the loan behaviour depends

predominantly on the geographical factors and the defaults

are generally a function of geographical events like natural

disasters and/or socio-political events. Therefore, for

estimating the loss in these transactions, we divided the

pool into different geographical segments like District, City,

Pin-Code, etc. 

6

Vintage chart – 2W and MSME loans of a multi asset originator Exhibit 3

Source: IFMR Capital
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From historical TMs (Transition Matrices), we identified

that once a contract misses three instalments the chances

of loan recovery gets very low, hence the instance of

default is taken as ‘3 instalments OD’.

From the vintage charts we observed that we need to

subset the loans with a minimum vintage of 12 months to

sufficiently capture the loan behaviour.

For every geographical subgroup, the probability of default

is estimated from previous four quarters’ data. For a

quarter t, the percentage of loans with three or more

instalments overdue is:

Q
t

= 
count (≥3 instalment OD contracts)

count (Live contracts )

Probability of default at time t is estimated by using max

function:

PD = max (Q
t–1

, Q
t–2

, Q
t–3

, Q
t–4

)

Inter and intra geographical correlation is calculated from

the subset data.

The result of the model validation is shown in Exhibit 4.

It can be seen from Exhibit 4 that the losses estimated by

the model are ± 0.5% of the actual losses. Another key

observation is that the tail of the model takes care of

subgroup-wise concentration risk in the pool. 

HHI index is a measure of concentration. High HHI

index indicates more concentration. As shown in Exhibit 5,

the transaction ‘T1_Originator B’ is having more

7

Microfinance – actual vs estimated Exhibit 4

Source: IFMR Capital
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Concentration risk Exhibit 5

Source: IFMR Capital

HHI Index Estimated Mean Loss Estimated 95% Loss

Tl_Originator B 0.1838 0.0293% 0.8197%

T2_OriginatorA 0.0610 0.0497% 0.0504%
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concentration risk (0.1838) as compared to the transaction

‘T2_Originator A’(0.0610). Even though the model

estimated lower mean loss for ‘T1_Originator B’ due to its

lower PD estimate, the tail losses i.e. the 95 percentile

losses of ‘T1_Originator B’ is higher. 

Commercial vehicle loan portfolio
We applied the model to estimate the loss of an out

sample test portfolio of a commercial vehicle entity and a

securitisation transaction of the same entity.

The loan portfolio is divided into different vehicle types

like LCV (light commercial vehicle), HCV (heavy commercial

vehicle), CE (construction equipment), cars, 3W (three

wheelers) etc.

From the historical TMs, the instance of default is

estimated to be ‘4 instalments OD’.

From the vintage charts we observed that we need to

subset the loans with a minimum vintage of 12 months to

sufficiently capture the loan behaviour.

Probability of default is estimated by using previous four

quarters’ data. For a quarter t, the percentage of loans with

four or more instalments overdue is:

Q
t

= count (≥4 instalment OD contracts)

count (Live contracts)

Probability of default at time t is estimated as:

PD = max (Q
t–1

, Q
t–2

, Q
t–3

, Q
t–4

)

Inter and intra vehicle correlation is calculated from the

subset data.

As shown in the output, the spread of the estimated loss

distribution is greater than the actual loss distribution to

cover the tail risks, however the mean losses for the

estimated and actual loss distributions are similar.

In both the microfinance transaction as well as the

commercial vehicle transaction, we could observe that

the loss numbers provided by this model are similar to

the actual losses, and moreover the differences are on

the conservative side on most occasions. These

evidences suggest that this model provides a better

estimate of the loss distribution for securitisation

transactions than heuristic assumptions being followed

in many cases. 

This approach, which we have discussed in this article, can

also be used to estimate the loss distribution of a financial

institution’s entire portfolio, which can then be used to

calculate the loan loss reserves, economic capital and

value-at-risk.
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Commercial vehicle – actual vs estimated Exhibit 6
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